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o Abstract

There is an agreement in the field that interlaboratory reproducibility of flow cyto-
metry measurements as well as the whole studies might be improved by a consensual
use of methodological approach. Typically, a consensus is made on a crucial markers
needed in the immunostaining panel, sometimes on the particular fluorochrome conju-
gates and rarely on a complete set of methods for sample preparation. The term “stan-
dardization” is used to describe the complete set of methodical steps, while
“harmonization” is used for partial agreement on the method. Standardization can pro-
vide a platform for improved reproducibility of cytometry results over prolonged
periods of time, across different sites and across different instruments. For the purpose
of structured discussion, several desired aims are described: common interpretation of
the immunophenotype definition of a target subset, accurate quantification, reproduc-
ible pattern of a multicolor immunophenotype, and reproducible intensity of all mea-
sured parameters. An overview of how standardization was approached by several
large consortia is provided: EuroFlow, The ONE Study, Human Immunology Project
Consortium (HIPC), and several other groups. Their particular aims and the tools
adopted to reach those aims are noted. How those standardization efforts were adopted
in the field and how the resulting outcome was evaluated is reviewed. Multiple chal-
lenges in the instrument hardware design, instrument setup tools, reagent design, and
quality features need to be addressed to achieve optimal standardization. Furthermore,
the aims of different studies vary, and thus, the reasonable requirements for standardi-
zation differ. A framework of reference for the reasonable outcomes of different
approaches is offered. Finally, it is argued that complete standardization is important
not only for the reproducibility of measurements but also for education, for quality
assessment and for algorithmic data analysis. The different standardized approaches
can and in fact should serve as benchmarking reference tools for the development of
future flow cytometry studies.  © 2019 International Society for Advancement of Cytometry
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Why, at What Level and to What Extent We Need Reproducibility

A central question to any laboratory method is its reproducibility. Flow cytometry
maintains a high overall reproducibility potential within a particular laboratory
whenever an appropriate sample preparation protocol with a quality antibody
reagent, a stable instrument and proper analysis is deployed. This has led to the
widespread use of flow cytometry in immunology, hematology, oncology, cell ther-
apy and other disciplines, ranging from research applications to translational
research involving human samples to diagnostic applications and cell therapy prod-
ucts. However, the reproducibility of findings is not as straightforward when a par-
ticular assay is adopted in a different laboratory, which is mostly performed using a
locally preferred staining protocol, an experimental design relying on locally chosen
reagents, a local instrument setup with locally chosen settings and local gating strate-
gies. Diverse applications pose different stringency requirements on reproducibility
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parameters. For the purpose of a structured discussion on
reproducibility, one should acknowledge that it is a rather
broad concept that may have a range of different meanings.
In general, we can ask for reproducibility at different levels:
(a) interpretation, (b) enumeration (Fig. 1), (c) staining pat-
tern, and (d) staining intensity (1). The focus of this review
will be aimed at interlaboratory reproducibility.

Most applications of clinical cytometry aim for interpre-
tation (e.g., “leukemia of B-cell precursor origin is present in
the sample”) and aim for precise enumeration (CD4 counts,
CD34 counts). Translational and research applications typi-
cally aim for the enumeration of multiple subsets at once
from a given specimen to provide a broad description of cel-
lular composition (e.g., percentage of various immune system
cells in blood) (2). Staining pattern is mostly categorized by
the positivity or negativity of a given marker on a cell popula-
tion of interest, although it can also be approached bio-
informatically across multiple parameters at once. Often,
intensity of expression is annotated as overexpression (strong
expression), normal expression or dim (weak) expression as
exemplified by AIEOP-BFM Consensus Guidelines 2016 (3).

Experimental design plays a major role in the outcome of
staining pattern (e.g, choice of markers, choice of fluoro-
chromes, choice of monoclonal antibody clones, choice of
instrument and instrument settings, and sample preparation
protocol) as does the experimental execution (e.g., adherence
to the protocols and experimental robustness). Not surpris-
ingly, manual analysis influences the end result to a great
extent. When interpretation and enumeration is the intended
outcome, multiple variants of staining protocols and instru-
ment setups may yield comparable results in CD4+ T-cells
(Fig. 1A), but would yield larger discrepancy in CD8+ T-cells
(Fig. 1B), stressing the need for subset specific benchmarking,
To complicate the matter, particular diseases present with
high proportions of subsets that are very rare in healthy (4,5)
necessitating disease specific benchmarking. Definitions that
influence staining patterns may impact the ability to clearly
define and/or resolve particular subsets, which in turn will
impact enumeration. Both, practical and theoretical consider-
ations of validation of cell-based assays are summarized in a
series of articles by International Council for Standardization
of Haematology (ICSH) and International Clinical Cytometry

However, this is where reproducibility issues arise. Society (ICCS) (6-10). Excellent overview of cytometry
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Figure 1. Immunophenotype interpretation and enumeration reproducibility benchmarking. {A) Three different combinations of surface markers
{CD27 + CD45RO-, CD62L + CD45RO—, CD197(CCR7) + CD45R0O-) allow for Naive T-cell definition in CD4+ T cell subsst and consequently for
comparable enumeration (56%) of Naive in CD4+ T cells. Note that small proportion (<2%) of CD27 + CD45RO- forms CCR7negative subset
{B) Naive T-cell definition using CD27 + CD45RO- in CD8+ T-cell subset would however capture 10.7% CCR7negative subset making the
enumeration discrepancy of CD8 Naive T-cell by CD27 + CD46RO- versus CD197(CCR7) + CD46RO- notable, Different disease states might
pronounce this discrepancy, necessitating disease specific benchmarking. [Color figure can be viewed at wileyonlinelibrary.com]
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methods, protocols, and discussion of technical consideration
is presented in a recent guidelines for the use of flow cyto-
metry and cell sorting in immunological studies (11).
Thoughtful definition of reproducibility aim calls for
particular methodological approach. The term standardization
is used for a complete and detailed set of linked methodical
steps, supported by standard operating protocols (SOP),
where any recognized sources of variation are removed. This
includes pre-analytical (sample preparation and immuno-
staining), analytical (instrument setup), and post-analytical
(analysis and interpretation) steps. In contrast, the term har-
monization is used to describe an approach where only key
steps of the whole approach are performed in a similar man-
ner while other parts are performed by locally preferred
method. In general, while standardization can achieve all
above mentioned reproducibility aims, harmonization can
yield reproducible interpretation, enumeration and in some
instances (e.g. harmonized immunostaining panel with locally
optimized sample preparation and instrument setup) even a
reproducible pattern. These terms are not strictly exclusive,
they in fact present a spectrum that can develop in the course
of the interlaboratory studies. Harmonization can be a sensi-
ble and achievable first step and may gradually develop into
more complex set of methods that can be considered stan-
dardization. Either approach should be transparent about the
desired outcome, should provide measurable outcome param-
eters and thus enable for a benchmarking. Only then it can
actually contribute to the overall increased reproducibility.
Flow cytometry presents a paradox as all generated data
are in a digital format from their inception; however, the data
interpretation is mostly visual by an experienced analyst (12).
The processing of large datasets of multiple measurements by
computational tools is thus relatively accessible (the data are
available) but is not employed at large by the cytometry com-
munity. Several studies have indicated that manual analysis is
a major source of variation (13,14), and the best documented
example of improving reproducibility by gating strategy unifi-
cation was the ISHAGE guidelines on CD34+ progenitor enu-
meration (15,16). Computational tools are clearly of major
importance to extend our understanding of the complex mul-
ticolor data we acquire (12), but such tools also present the
possibility to analyze large datasets acquired in multiple labo-
ratories. However, this requires that staining patterns are not
compromised by technical variability. This is relatively easy to
adopt in a single laboratory with single instrument settings
and data collection over prolonged time periods (month or
years) but poses challenges in coordinated studies involving
multiple institutions and multiple (even diverse) instruments.

ExisTING EFFORTS TO ACHIEVE REPRODUCIBILITY

How Large-Scale interlaboratory Studies Approach
Reproducibility and Standardization?

Different consortia listed below aimed to address diverse
levels of reproducibility: (a) the reproducibility of interpreta-
tion (all consortia; some argue that more is not necessary for
their purpose such as Harmonemia (17), AIEOP-BFM group
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(3,18-23), and ERIC (21-23)), (b) the reproducibility of enu-
meration (prominently in immunology: The ONE Study
(24,25), HIPC (14,26,27), but also in the leukemia residual
disease detection: EuroFlow (28~30), COG group (31), and
ERIC (21,22)), (c) the reproducibility of staining pattern is
typically achieved when the same panel of reagents is used
(The ONE Study (25), HIPC (26), EuroFlow (32,33), and
COG (31)), which allows definition of the manual analysis
strategy and also automated analysis tools, and (d) the repro-
ducibility of patterns including the staining intensity that
allows analysis standardization and database-assisted compar-
ison to previous cases in interlaboratory settings: EuroFlow
(34) or The Canadian National Transplant Research Program
that analyzed multiple immune cells in multiple centers by
automated analysis (35).

In the hematology field, the EuroFlow consortium of
eight European hematology laboratories was funded by the
European Commission Program in 2006 and decided to
develop an approach for standardized hematological diagnos-
tics that would describe the complete preanalytical procedures
and design analytical software that would integrate all data
measured by the consortium and use this dataset to analyze
and interpret any new cases (36). Thus, a standard operating
protocol (SOP) was developed that would set up all
cytometers in the consortium to the same intensity readout
(using hard dyed beads as a standard) (37). Uniform sets of
reagents (antibody panels) were assembled and tested
together with the staining SOP (33), and software tools were
built that enabled the analysis of the standardized data. Alter-
native reagents providing the same staining patterns were
tested side-by-side with the original reagents, and the updated
reagent list is publicly shared on the euroflow.org website.
Staining intensity-based evaluation of the quality of the locally
acquired data file in comparison with the expected variation
has been built into a quality assurance scheme (1). An analy-
sis of a dataset of 1,438 cases of acute leukemia was published
by Lhermitte et al. (34) that utilized automated analysis tools
applied to standardized data collected in 12 laboratories. Fur-
thermore, the consortium developed a minimal residual dis-
ease detection panel for multiple myeloma (MM) (28) and B-
cell precursor leukemia (BCP-ALL) (38) with corresponding
data analysis tools that are based on multiparameter evalua-
tions (39). The Swiss Cytometry Society (SCS) published a
feasibility study in 10 clinical laboratories that documented
the improvement in EuroFlow LST tube performance when
proper feedback was given based on a local quality assurance
program (40). A guide on setting up the hard dyed-bead tar-
get values on different cytometry platforms made by different
manufacturers has been published and allows full intensity
standardization (41).

The European Research Initiative on chronic lympho-
cytic leukemia (CLL) (ERIC, www.ericll.org) has been focused
on improving the outcome of patients with CLL. As part of
these efforts, ERIC developed and tested the performance of a
consensus 4-color flow cytometry antibody panel for the
detection of CLL minimal residual disease in 2007 (23). This
approach was later extended to six colors with enhanced
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sensitivity (21), and it was recently determined to be comple-
mentary to next-generation sequencing-based methods (22).

The Harmonemia project (supported by Beckman Coul-
ter) focused on confirming that the interpretation, enumera-
tion and staining patterns of subsets analyzed by EuroFlow
lymphocytosis screening tube can be achieved using alterna-
tive reagents with the same outcome quality (42) and that dif-
ferent cytometers can yield data with similar patterns (17,43).

The Children’s Oncology Group (COG) study developed
a unified minimal residual disease detection approach (44)
deployed in two centers for the COG study AALL0232 that
used the same antibody panel, although on different
cytometers, and demonstrated excellent interlaboratory enu-
meration correlation (31). Recently, COG developed a QA
scheme and educational program for BCP-ALL MRD (45).

The Associazone Italiana Ematologia Oncologia
Pediatrica (AIEOP) and the Berlin-Frankfurt-Munster (BFM)
group have developed a common, standardized protocol for
BCP-ALL MRD evaluation by four-color flow cytometry (19).
This protocol was followed by an 8-color approach tested for
stratification concordance with the PCR-based assessment
(20). This group uses a range of diverse instruments, so the
proposed panels offer some flexibility in antibody reagent
choice. The 2016 consensus guidelines on immuno-
phenotyping focused primarily on the delivery of a reproduc-
ible interpretation without the requirement to use particular
antibody panels or instruments (although minimum require-
ments of markers were stated and general requirements of
gating strategy were defined) (3). A proposal for a short and
machine readable format of diagnostic summary reporting
(FDE code) was presented (18).

In the immunology field, the expansion of the number of
functional subsets revealed by expanding the number of avail-
able parameters led to a need for consensus on which set of
markers could be used to define and thus enumerate different
cell subsets (46,47). Multiple partially overlapping but
unidentical definitions are used to define naive T-cells (Fig. 1),
transitional B cells, and dendritic cells. In some cases, the rea-
soning was based on confusion caused by poor performance of
particular clones (as in the case of CCR7 detection (26)).

To resolve some of these conflicting issues, several collab-
orative studies were initiated. The Human Immunology Project
Consortium (HIPC) (26) has comprehensively summarized the
variables and challenges in the assessment of the cellular com-
position of immune cells. In 2012, they proposed five 8-color
panels that defined T-cells, B-cells and innate cells with surface
markers only and prepared commercially available lyophilized
reagent cocktails. A further focus was aimed at data analysis
(48), where automated population identification and naming
was achieved with flowCL (27), and superiority of automated
analysis over individual analyst gating was shown (14).

The ONE Study consortium aimed to describe the
immune system after solid organ transplantation (25). They
designed a panel of six tubes (seven to nine colors) and had
those prepared as dried reagents formulated per single test. A
detailed guide to their approach was published in 2016 (24).
Later, they performed a single laboratory study reporting age
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and gender differences on a cohort of 98 healthy adults (49).
The Canadian National Transplant Research Program
(CNTRP) adopted The ONE study panels and performed a
follow-up study using the dried reagents in which the CNTRP
compared sample preparation variables (PBMC versus imme-
diate vs. 24-h delayed staining) and developed and
benchmarked an automated analysis approach (35).

The PRECISAIDS project published an initial study on
standardization quality for a planned interlaboratory study
using nine 8-color panels that reached very good MFI and cell
subset enumeration variability (50).

For application in the immunology field, the EuroFlow
consortium built six panels describing lymphocytes in 2012
with the aim of describing abnormalities in the immune sys-
tem in primary immunodeficiency (PID). A fully standardized
system including instrument setup, sample preparation and
data analysis was built in a stepwise manner to aid in diag-
nostics and translational research in PID. This standardized
system provides a first tier test of lymphocyte subsets (PID
orientation tube; including naive vs memory compartments)
(51,52) and is a powerful approach that was confirmed to be
applicable to PID with a large international cohort of 99 PID
patients and 250 healthy controls (52). A further detailed
panel that aims to dissect T-cell and B-cell subsets was assem-
bled and used by the consortium (52). T-cell tubes, including
naive forms, and activation and definition of recent thymic
emigrants provide a very sensitive and specific instrument to
diagnose severe immunodeficiency (SCID, CID, including
activated T-cells in Omenn syndrome cases and cases with
maternal engraftment). B cells were further phenotyped by
8-color panels to describe PreGC and PostGC development
and by 12-color panel revealing the IgH-isotype expressing
cells (53,54). The same panel was used by the EuroFlow PID
consortium to investigate primary antibody deficiency (55).

Summary of the studies conducted by above mentioned
consortia is provided in Table 1.

What are the commonalities and disparities between
clinical diagnostic and clinical research or monitoring studies?
Apart from the different regulatory status, they all need to
define the cells of interest, interpret (simplify) their identity
from the immunophenotype and enumerate their proportion
in the sample. Then, data analysis should be performed with-
out any subjective and sample specific bias. While the diag-
nostic tests should use mature and validated methods, the
clinical research studies may have multiple objectives, where
particular cell subsets need to be enumerated reproducibly
with a high priority, but other subsets may have rather lim-
ited priority and their evaluation is rather exploratory. Thus,
building more extensive standardization is more appropriate
for diagnostic use, while harmonization might offer more
flexibility for clinical research studies.

When approached from the data analysis perspective, the
diagnostic use requires reproducible analysis of a singular
sample (with the frame of reference of large cohort of control
samples), while clinical research studies need to be analyzed
as a whole cohort without any bias, but with a possibility to
react to unexpected new findings, to accommodate for added

Standardization of Flow Cytometry



Table 1. Overview of interlaboratory studies aiming at standardization

CONSORTIUM STANDARDIZATION ASPECT VALIDATION OR BENCHMARKING REFERENCE
Hematology
EuroFlow, www.euroflow.org EuroFlow concept (36)
Standardization procedures 37)
Panels of reagents for leukemia (33)
diagnostics
QA scheme QA scheme (1)
Automated leukemia classification 652 reference cases (34)
Minimal residual disease for multiple 385 samples vs conventional flow (28)
myeloma and vs outcome
Minimal residual disease for Enumeration performance (38)
BCP-ALL benchmarked by NGS
Adoption by the field QA scheme (40)
Cross platform standardization Canto, Navios, MACS Quant; QA (41)
scheme
ERIC, www.ericll.org 4-color panel for detection of CLL (23)
MRD
6-color panel for detection of CLL (21)
MRD
6-color panel for detection of CLL Enumeration performance (22)
MRD benchmarked by NGS
Harmonemia Panel for Lymphocytosis Benchmarked by EuroFlow panel (42)
Cross platform standardization FACS Canto vs Navios (17,43)
Children’s Oncology Group (COG) MRD for BCP-ALL inter-laboratory enumeration 31)
QA scheme QA scheme (45)
The AIEOP-BFM group 4-color panel MRD for BCP-ALL (19)
8-color panel MRD for BCP-ALL Stratification performance (20)
benchmarked by PCR
Immunophenotyping panels and 3
diagnostic interpretations for
pediatric ALL
Immunology
Human Immunology Project, www.  five 8-color panels (26)
immuneprofiling.org
Automated subset naming (27)
Automated gating Benchmarked by manual analysis (14)
The ONE Study Panel of six tubes (7 to 9-color) Inter-lab, intra-assay, inter-operator (25) (24)
CNTRP (One Study panels) Multicenter study of inter-center Automated vs manual, fresh vs (35)
variability, subset enumeration stored viable samples
variability, automated data
analysis
PRECISAIDS nine 8-color panels, 11 sites, Inter-laboratory test, enumeration (50)
7 instrument types and MFI
EuroFlow 8-color panel for lymphocytes Performance in 99 PID patients (52)
(250 controls)
12-color B cell phenotype 234 healthy controls (53)
12-color B cell phenotype 139 primary antibody deficiency (55)

markers in further research stages to improve cell definitions.
Example of the former approach is the EuroFlow database-
guided diagnosis and classification of acute leukemia (34),
while the latter is documented by HIPC (14) and

CNTRP (35).
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How Good Is Good Enough?

A key initial parameter of any reproducibility effort is the
question: How good is good enough? Validation and perfor-
mance of laboratory tests uses terms accuracy, trueness, and
precision (Box 1) (56). Definition of the lower border of good
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reproducibility should take into account the results of quality
assessment (QA) studies. There is a summary of experiences
with UKNEQAS (57,58) and Dutch SIHON (59). However,
both groups measured consensus on the interpretation (also
in a per marker fashion) and enumeration. The general mes-
sage of CD34 ISHAGE guidelines and their deployment is
that regardless of instrument and reagent manufacturer, the
enumeration reproducibility can be as high as CV <10,8%,
when an appropriate choice of bright reagents is made for
CD34 and a proper gating scheme is followed (60). This is
similar to CV < 13.7% for CD4 T cell counting (61). At the
same time, it also summarized evidence indicating that adher-
ence to good practices and guidelines is frequently poor in
the large field, so education is a crucial part of improvement
for the future (16,62). A recent French study evaluated the
real-life intra-assay repeatability of enumeration of lympho-
cyte subsets and found that frequent subsets (T-lymphocytes)
can be quantitated with a CV of 1% (T-lymphocytes), while
other subsets were less precise (NK cells with a CV of 4.78%)
(63). Note that, precise enumeration not only requires that
sufficient numbers of events are collected, but it also requires
assay validation with a set of controls (64). This gap between
interlaboratory reproducibility and intra-assay repeatability
might be closed by standardization. The consensus recom-
mendations by ICSH and ICCS for intra-assay repeatability is
that desirable target is a CV of less than 10%, but for less
abundant populations 20% can be acceptable (10).

Reproducibility of patterns was not evaluated in the liter-
ature systematically, however studies building automated
analysis tools quote technical variability as likely reason for
failure to recognize biological differences (14,35).

When evaluating intensity, only EuroFlow QA data are
available for a single panel (1,65). The Lymphocytosis Screen-
ing Tube was chosen as a QA model since it uses conserva-
tively expressed molecules in most channels (CD4, CD3,
CD8, CD19, CD20, CD45, CD5, and CD81) and allows the
gating of a subset that is clearly positive for each of them, and
its MFI could be compared across the whole dataset of
123 samples from 11 laboratories. A principal component
analysis projection resolves all subsets well in a distinct space
of that projection. The coefficient of variation of MFI was as

Box 1

Accuracy is closeness of agreement between a quantity
value obtained by measurement and the true value of
the measurand.

Trueness is defined as the closeness of agreement
between the average value obtained from a large series
of test results and an accepted reference value.

Precision is the dispersion of replicate measurements,
assessed intra-assay (“repeatability”) or inter-assay
(interlaboratory: “reproducibility”). Precision is quanti-
fied by standard deviation and coefficient of varia-
tion (CV).
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low as 10.9% and as high as 52.3% for the above-named mol-
ecules in individual years (27 to 33 samples per year) in the
standardized yet interlaboratory settings. These MFI CVs are
well comparable to a PRECISESADS study, that used single
sample measured in 11 different laboratories with standard-
ized approach (50). For less consistent molecules (kappa and
lambda light chains), the CV was in the range of 43-189%.
Translated into a visual difference, this means one can expect
the median fluorescence intensity of the molecules in the
group to be within half of a decade on a dotplot in any labo-
ratory, during any year, for any instrument and even with
similarly performing alternative reagents.

Importantly, the most appropriate measurable indicator
of reproducibility outcome should be identified for each type
of study (i.e., interpretation, enumeration, and staining pat-
tern), and any approach should be evaluated against those
criteria in a postimplementation study or in a quality assur-
ance scheme. Any level of precision achieved should be inter-
preted in relation to the purpose of each flow cytometry
assay. In addition, individual measurements (their normal or
abnormal values) should be interpreted in relation to the gen-
eral performance of the assay in question.

How Reproducibility Can Be Achieved Between
Projects, Between Instruments and Between
Reagents?

The collaborative studies experienced that multiple hurdles
remain in the way of standardization efforts. Those can be
summarized as the interplay between these factors: purpose,
resources, technology and training.

The purpose of each collaborative study is different in its
ambition, intended complexity, concerns on applicability in a
given field and time, demand for fast or long term solutions,
size of the group and its heterogeneity, and intended regula-
tory status.

Resources limit each of those studies financially
(e.g, how large the benchmarking or comparison studies can
be and whether there is an infrastructure for data sharing and
computational analysis) and physically (e.g., how much man-
power is available, what instrumentation is available, and how
many samples can be processed).

Technology limits studies in the context of diversity of
instruments and their ability to measure particular fluoro-
chrome combinations with intended quality.

For the purpose of this review, only the technological
limitations will be discussed, as those can be overcome by the
efforts of the current and future investigators in collaboration
with the industry, and consequently, the resource and pur-
pose issues can be redefined when needed.

Hardware

One frequently voiced objection is that flow cytometry instru-
mentation differences pose a major obstacle to full standardi-
zation. However, when an 8-color panel is designed for a
three laser instrument, it can be measured on any of the
13 instruments from nine manufacturers (41). A similar con-
clusion was reached by the Harmonemia group (43) and the

Standardization of Flow Cytometry
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CNTRP group (35). It is thus feasible to reach reproducibility
of interpretation and enumeration of different instrument
types with the same panel, with a caveat that some differences
in sensitivity to weak expression can be introduced by small
differences in excitation wavelength and emission filter speci-
fications or other hardware differences (detector type). The
feasibility of a multi-instrument interlaboratory setup was
documented by EuroFlow (Canto I, LSR II, and Cyan ADP)
(37), COG (Canto and LSR II instrument) (31), and Harmon-
emia (Canto II and Navios instrument) (42). It was argued by
Solly et al. (43), that a setup of Canto II and Navios instru-
ments with Rainbow beads produces comparable data for cells
stained with CD16 Pacific Blue after a simple rescaling to
accommodate the differences in the parameter scaling. How-
ever, the differences can be more prominent in channels
where a larger difference in filter wavelength specification
exists. In those cases, adjustment of the Rainbow target values
must be performed for each fluorochrome and filter pair, as
recently demonstrated by Novakova for Canto II and Navios
instruments (41). This results in a full standardization down
to the same pattern and intensity. However, all of those
attempts rely on two crucial assumptions: there is a linearity
of measurement, and there is no difference in sensitivity to a
low signal. Also, unequal measurement noise of different
instrument types will impact on the low end of the scale. To
reach similar resolution, CNTRP has adopted an interesting
approach to reach the same Stain index settings for two dif-
ferently designed instruments (35). It remains to be seen how
similar the patterns can be between instruments working on a
different photon detection principle (PMT detector, semicon-
ductor detector arrays “avalanche diode”). Methods for the
objective comparison of the capability of instruments to per-
form fluorescence measurements are being developed and will
be necessary for making assumptions about the “similar” per-
formance of diverse cytometers (66).

Sample preparation method

Another factor that can influence the standardization of
results is a sample preparation method. This is critical pri-
marily for the standardization of enumeration because cell
loss is an inevitable consequence of suspension processing
that involves centrifugation. The total number of cells lost
during sample prep differed by a factor of two in the test per-
formed by EuroFlow, while the intensity of individual fluoro-
chromes decreased only by up to 25% (37). Another
challenging variable is cell type-specific ex vivo longevity.
Plasmablasts, for instance, have significantly reduced longev-
ity when sample processing is delayed by 24h (35).
Fluorophores are sensitive to light exposure (67), fixatives
and even elements such as copper (in the case of quantum
dots) (68). Thus, sample preparation methods must be evalu-
ated for either a loss of target cells or a loss of fluorescence
signal due to either epitope loss, damage, masking or fluo-
rophore destruction. An overview of the variables that require
optimization particularly in intracellular cytokine staining
was presented by Nomura et al (69). Careful assay validation
(6-10), appropriate staff training and external quality

Cytometry Part A e 97A: 137-147, 2020

assessment are the tools that need to be employed to reduce
sample preparation validation. Unfortunately, a protocol non-
adherence is a frequent cause for failure in the QA (16,65).

Analytical specificity

The first keystone of flow cytometry reproducibility is the
choice of proper definition markers for a given subset of
interests (“Analytical specificity” (10)). To this end, interna-
tional consensus guidelines were issued for leukemia and lym-
phoma immunophenotyping (70), and proposal seeking
unification of immune cell definition for flow cytometry
monitoring was made by HIPC (26). In 2010, the new publi-
cation format, Optimized Multicolor Immunofluorescence
Panel (OMIP), was introduced in Cytometry Part A (71). The
OMIP format facilitates the exchange of knowledge on the
optimal detection of particular cell subsets and their surface
or intracellular proteins and importantly presents the optimi-
zation experiments to the field. Up to July 2019, 59 OMIPs
were published, describing a focused cell subset
(e.g., dendritic cells (72)) or broad leukocyte profiling with
21-parameter flow cytometry (73) or 26-parameter mass cyto-
metry (74). All consortia mentioned in the section on repro-
ducibility in the large-scale studies invested significant effort
into the selection and performance testing of the optimal
antibody panels.

Reagents

An additional critical component of the standardization pro-
cedure is the antibody conjugate. Misleading results can be
obtained for several reasons: Antibody clones do not recog-
nize their intended target or bind to other targets at the same
time. Cluster of differentiation (CD nomenclature) was there-
fore developed based on independent testing by HLDA work-
shops to provide clear consensual data on antibody clones’
reactivities (75). CD number designation is used for both, the
target protein and antibody clones recognizing that target.
Nevertheless, controversies may result from nonuniform data
(e.g, shedding/recirculation of surface proteins under some
conditions or epitope masking) (26,76) or can be caused by
different antibodies belonging to the same CD but recogniz-
ing different epitopes. Notably, some epitopes are decreased
or lost upon cryopreservation (e.g., in CD62L) (35); in other
cases, cell fixation can decrease epitope availability for partic-
ular antibody clones (77,78), resulting in alteration in the
measured signal intensity. Accompanying article in this Spe-
cial issue is dedicated to antibody validation (79).

Differences in the resolution of dimly stained cells
between different fluorochromes are another possible source
of disparities. Thus, interpretation of dimly positive or nega-
tive staining can be achieved when a bright or dim fluoro-
chrome is used on the same molecule and the same cell,
respectively (11,80). This could also hamper the enumeration
of cells with low expression of the marker, and it will cer-
tainly affect the overall staining pattern.

Prerequisite for reproducible intensity of staining is the
use of antibody conjugates that are produced with no sub-
stantial lot-to-lot differences. Unfortunately, there is no data
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on the stringency of manufacturers for this parameter thus
far. Recently, Bottcher et al. performed a pilot study on 1,323
consecutive antibody lots of 157 different monoclonal anti-
bodies (81), and he found that while in general the variability
is very low (median CV of 3.8%), 8,8% of reagents exceeded
20% (including 3.6% of reagents that exceeded 30% lot-to-lot
intensity difference). When stringency criteria of 20% were
applied, different fluorochromes performed with different fail-
ure rates (0% to 37.5%), and he did observe diverse failure
rates in different manufacturers. The method used (analysis
of old vs new lot in parallel on the antibody capture bead)
cannot resolve a production problem from a stability problem
and does not test for binding to the epitope. This study shows
that antibody reagents can be made very reproducibly (91.2%
reagents less than 20% different) and thus should not be a
major source of variability. Declaration of particular staining
intensity performance criteria by the manufacturer would
guide the choice of reagents for standardized assays.

EuroFlow has also tested all reagents accepted later as
alternative reagents for use with the standardized approach
for both staining pattern and intensity of fluorescence on nor-
mal as well as abnormal (leukemic) cells, and the results indi-
cated that most reagents yielded the same pattern and
intensity even when different clones were used and different
manufacturers produced them. However, nothing can replace
a side-by-side test on the intended sample type with a stan-
dardized protocol in the assessment whether two reagents
provide the same staining pattern and intensity. This is also
evidenced in the EuroFlow QA assessment, where one of the
reasons for QA failure is the use of locally chosen reagents
that were never compared to the original reagents and thus
were never listed as a EuroFlow-tested alternative
reagent (65).

Of course, pipetting accuracy and reagent shelf stability
influence the staining pattern and intensity. One possible
solution is the use of stabilized reagent mixtures that not only
provide ease of use but also limit room for pipetting errors
(14,51,82). These are available either as commercially supplied
ready to use mixtures or dried reagents or can be custom
made by several manufacturers.

Data analysis

Data analysis plays a major role in the reproducibility of any
flow cytometry study. Any cytometry study should be publi-
shed with a full explanation of the gating strategy as described
in the “The minimum information about a flow cytometry
experiment” (MIFlowCyt) (83), which summarizes that a
complete set of information about a published cytometry
experiment is mandatory for Cytometry Part A journal
submissions.

Automated analysis with software tools was shown to
bring more objectivity into the gating procedure and thus
increase the reproducibility of gating and enumeration
(12,14,35). Indeed, one of the prerequisites for automated
analyses is high-quality data that is fully and correctly anno-
tated without ad hoc changes and without any accidentally
missing reagents.
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Standardized instrument setup has facilitated the inter-
laboratory comparisons. EuroFlow has thus far collected over
6,000 anonymized FCS files acquired in the standardized
fashion on its internal database server. This enables auto-
mated, database driven comparisons of phenotypes and
grouping of samples with similar features (34) as well as using
the stored data to aid in the interpretation of a newly
acquired case.

HIPC has used a dataset acquired in standardized inter-
laboratory settings, using lyophilized reagents on stored (fixed
or cryopreserved) PBMCs for an automated data analysis
(14). They evaluated two series of replicates and statistically
evaluated performance of manual, central manual and auto-
mated analysis. They found a lower coefficient of variation in
20 of 21 subsets in central analysis. Power analysis allowed
them to identify subsets where automated centralized analysis
performed better then local gating. Not surprisingly, poorly
resolved populations and protocol non-adherence was found
to be a major contributor to variable results.

CNTRP has designed a successful automated analysis
pipeline for The ONE study panels (35). Again, subsets that
were poorly resolved by gating markers yielded higher vari-
ability in automated detection compared to clearly separated
clusters of cells.

How Would Standardization Develop in the Near
Future?

This review documents that the room for consensus is much
less constricted by the instrumentation and reagents than pre-
viously claimed. Furthermore, to close the gaps between dif-
ferent consensus studies, benchmarking one approach by
using alternative approaches is necessary for future progress,
the reproducibility of interpretation and enumeration (42)
and perhaps even for evaluating staining patterns.

All of the above-named large studies serve as bench-
marks of their kind. It would be extremely valuable to the
field if each new panel proposal that aspires to serve as a
benchmark and potentially a new consensus would perform a
side-by-side benchmarking comparison to existing large stud-
ies and document the differences obtained. Additionally, a
deposition of at least a small cohort of well-chosen example
files (anonymized but annotated as controls and disease) to a
public domain (FlowRepository or similar) would allow fur-
ther virtual comparisons by data analysis tools.

Standardization will be facilitated with several types of
pressure, where data analysis pipeline developers will push for
consistent (standardized) data for successful implementation
and a regulatory pressure on IVD diagnostics (EU Medical
Device 2017/746 effective from 2022) will ask higher level of
stringency even for Laboratory Devised Tests in clinical
diagnostics.

The technical advancements (automated solutions for
portability of assay setup from instrument to instrument) will
enable deployment of the standardization. Since most cur-
rently manufactured clinical and mid-range cytometers can
detect at least 8 common fluorochromes, standardization
across different instruments is also feasible (41). Further
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development of multicolor cytometry studies poses also logis-
tical and sample preparation challenges. For large studies
spanning long time periods, it is essential that all reagents
needed for a panel are available in the laboratory stock, are
not compromised by shelf life and are pipetted to each sample
exactly as required by the SOP. This is not a simple logistical
task, and it is error prone. Thus, the availability of stable
reagent mixes on the market that contain an entire panel or
allow at least a building block approach to a panel design
(backbone reagents in the mix and few reagents added indi-
vidually) would help to reduce the design and performance
variability. This benefit is documented by some of the newer
technologies, for example, mass cytometry (84). Reagent sets
can be supplied in blocs, thus allowing analysis tools to be tai-
lored to a given panel (85) and thus allow for direct compara-
bility of the resulting immunophenotype patterns between
projects and between laboratories. Paradoxically, progress in
this direction is slowed by the requirements of national regu-
latory bodies that require formal clinical studies for antibody
reagent mixtures to declare them fit for diagnostic purpose,
resulting in the virtual absence of commercially available
reagent mixtures. However, where legally allowed, the on-
demand antibody reagent mixtures or their dried alternatives
might contribute reduction of the variation of the signal
intensity (as exemplified by PIDOT and LST tubes (51)). For-
tunately for the field, EuroFlow, HIPC, and The ONE study
panels are developing into complete and standardized solu-
tions (from instrument setup to reagent panels to data analy-
sis) manufactured by established vendors.

Thus, in the future, standardized and benchmarked
immunostaining panels might be more often supplied as
ready-made reagent mixtures (either as a catalog items or as
an on demand made products). This might simplify sample
preparation and reduce errors. Ideally, the demand for repro-
ducibility would also motivate reagent manufacturers to
develop and declare intensity based quality controls of the
antibody conjugates (79). Reduction of technical errors
together with the broader use of a particular immunostaining
panel might motivate the development of data analysis tools,
that will be more accessible also to non-programmers.

High parameter cytometry (>20) allows for benchmarking
alternative definitions of cell subsets together with cell classifi-
cation and phenotype reporting tools (27,86,87). These
approaches have the potential to reduce the current cell subset
nomenclature issues. An interesting approach to learn cell
identity from flow cytometry datasets was developed by the
Irish group, called “Marker Enrichment Modeling (MEM)
(87,88). This kind of aggregated immunophenotype analysis
approach could potentially bring more benchmarking options
into comparisons of different immunophenotyping approaches
for the same cell subsets in a high-content manner by
reanalyses of various existing datasets.

CONCLUSIONS

Standardized approaches are already technically feasible as
documented by the studies listed above. Within one
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interlaboratory study, achieving reproducible results is possi-
ble. Is there any chance that different groups and studies
would build on each other’s advancements and eventually
converge? Thus far, the greatest challenge to achieving repro-
ducible results seems to be our ability to reach a consensus
and eventually adhere to that consensus. This can be under-
stood to some extent since any consensus is by definition not
the most up-to-date solution because further development is
achieved in any field before a consensus is reached and tested.
A concern has been raised that adherence to a standardized
assay practically blocks any further innovation. Additionally,
a divergence in the purpose and available resources limit the
consensual use of standardized procedures. It is therefore
likely that early phases of the interlaboratory studies will be
less standardized (or rather harmonized), while later, more
mature stages will be standardized.

In conclusion, standardized approaches offer not only
the benefit of consensual solutions that can be benchmarked
and evaluated in diverse applications but also the structured
education of users and quality assessment tools. Furthermore,
a fully standardized solution to the level of patterns and
intensity lends itself to automated analyses by academically
designed algorithms or by commercial software solutions. All
of these factors combined will contribute to the enhanced
interlaboratory reproducibility of the cytometry studies.
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