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� Abstract
In this technical note, I describe an in silico model of multiparameter fluorescence meas-
urements that takes into account intrinsic cellular autofluorescence and stained dye fluo-
rescence distributions, fluorescence spectrum spillovers, and photon counting statistics.
Using this model, it is easy to manipulate spectral variables as well as error terms to under-
stand the impact of each on the distributions of estimated cell-associated dyes (e.g., conju-
gated monoclonal antibodies in immunophenotyping). An application of this model was
to understand the genesis of “unusual” autofluorescence distributions that occasionally
happen in multi-color immunophenotyping. These unusual distributions show striking
correlated patterns (diagonals) for graphs of certain pairs of parameters. Here I show that
these arise from combinations of spillover-spreading from unviewed parameters. While
disconcerting to researchers taught to look for diagonals in distributions as heralding
improper compensation, these distributions are in fact appropriate. In general, one can
ignore the characteristics of cell distributions within the same limits as background (e.g.,
as proscribed by a fluorescence-minus-one, or FMO, control), as there is essentially no
information content in that region. Published 2016 International Society for Advancement of Cytom-

etry. This article is a US Government work, and as such, is in the public domain in the USA.
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WE have occasionally noticed unusual distributions of autofluorescence in multi-

color immunophenotyping panels (Fig. 1). Specifically, when displayed with certain

pairs of parameters, the cells in the autofluorescence region show a correlated distri-

bution (i.e., appearing on a diagonal). Because the appearance of a diagonal distribu-

tion in compensated plots has long been used as an indicator of potential improper

compensation, the appearance of these distributions raised concerns that there may

be problems with the panel, the instrument, or the compensation.

To address this, and other compensation-related questions, I developed an in

silico model of fluorescence measurements by flow cytometry. This model takes as

input parameters the noise distribution in the measurements, the fluorescence spill-

over between measurement detectors, and the proportions and fluorescence distribu-

tions of one or more subsets of cells. Using this model, I reproduced the unexpected

distributions seen in some of our panels, and thereby can explain their origin.

The process of compensation is a transformation of measurement space into fluo-

rescence space (in other words, transforming measurement values to estimates of cell-

associated fluorescence). Measurements from any single detector comprise contributions

from multiple fluorescences because of spectral spillover. With standard linear algebra,

these are transformed into values that estimate the individual “pure” fluorescences (1).

As previously described, this process also convolves measurement error from each of the

individual detectors into the final values, leading to “spillover spreading error” (2). It is

worth reiterating that this error is not introduced nor exacerbated by compensation: the

error arises primarily from photon counting statistics (3), and is present in the measure-

ment prior to any transformations.
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The linear algebra used for spillover compensation per-

forms a linear transformation. This effectively takes the corre-

lated (“diagonal”) distributions of uncompensated data and

transforms them into uncorrelated (“cloudlike”) distributions

in the compensated plots. It should therefore come as no sur-

prise that if the original distribution in the uncompensated

plot is not correlated (i.e., cloudlike), then this same transfor-

mation may lead to an unexpected correlated (diagonal)

distribution.

Autofluorescence will typically have an uncorrelated dis-

tribution in the uncompensated measurement space, particu-

larly for small cells such as lymphocytes. This is because, at

such low signal intensity, measurement errors dominate; noise

will be random and thus not correlated between channels.

To understand the impact of measurement noise and spill-

over spreading on the distributions of fluorescence measure-

ments after compensation, I developed an in silico model of

flow cytometry detection (see Methods for details). Figure 2

illustrates an analysis using this model. Nine subsets of cells

were modeled that have different staining patterns for two

detectors. As shown in Figure 2A, the nine have been con-

structed to be nonoverlapping so that the impact of the model

variables can be visualized. In this panel, a small amount of

measurement noise is modeled (i.e., relatively high photon

counts), leading to a mild amount of spillover spreading, as

seen by the increased variance in the “Z” parameter for cells

with higher “X” fluorescence. In this model, the variation of

intrinsic autofluorescence is small, so the distributions of cells

are very tight.

Figure 2B illustrates the impact of fivefold higher relative

measurement noise (i.e., reducing the photon counts by a fac-

tor of 25). The amount of spillover spreading is dramatically

increased, as is evident by the increased spread in the “Z”

dimension. As well, it can be seen that the distributions of the

events attained a negative correlation between the parameters

“Z” and “X”—and this is much more obvious at the low “X”

intensity populations. Note that for this example, there is no

spillover into parameter “Y” and the distributions in the “Y”

channel are uniform as expected.

Figures 2C and 2D illustrates the impact of spill over into

the “Y” parameter. Depending on whether the spillover comes

from parameter “Z” (Fig. 2C) or “X” (Fig. 2D), the shape of

the distributions in the “Z vs. Y” bivariate plots is strikingly

different. In both cases, there is apparently highly correlated

distribution between parameters “Z” and “Y”, either negative

or positive. It should be stressed, however, that these apparent

correlations exist only within the background region in the

“Z” parameter (i.e., occur in the area where negative events

are found).

Figure 3A illustrates in more detail why these correlations

arise; in this figure, only the five populations having positive

“Y” fluorescence are modeled. Here, the critical observation is

Figure 1. A: Peripheral blood mononuclear cells were stained with a 16-color immunophenotyping panel, and compensated using stand-

ard methods. Shown are three graphs from the same sample, plotting a PerCP-Cy5.5 reagent against a Cy5PE, PE, or BV421 reagent. All of

these reagents stain a small minority of cells. Substantial spillover occurs amongst the first three reagents, but not with BV421. The distri-

bution of autofluorescence (background) amongst the vast majority of cells not staining with these reagents shows an unexpected nega-

tive (left) or positive (middle) correlation, as indicated by the dashed line. The first two graphs are the only pairs of parameter

combinations (out of 120) showing such an effect in this panel. B: Similar to Panel A, but using a different, 13-color panel. In this panel,

four of 78 pairwise combinations exhibited obvious correlated background distributions.
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in the uncompensated panel. The populations of cells already

have a significant spreading in the “X” dimension because of

the spillover spreading error from the “Y” parameter. As com-

pensation is applied partially or fully, the events at the high-

end of each population are pushed further down than the

events at the low-end, leading to an apparent negative correla-

tion post compensation.

As shown in Figures 3B and 3C, these unusual distribu-

tions are occurring within the autofluorescence or background

region within the “Z” parameter. Since all of these populations

are modeled with no “Z” fluorescence, they represent the fluo-

rescence minus one (FMO) controls. Thus, the area occupied

by these populations, illustrated by the purple-shaded region,

is in the negative distribution for events.

This serves as a reinforcement that everything below the

FMO boundary is negative and carries essentially no informa-

tion. The distribution of events below the FMO boundary

should not, on their own, raise concerns that there may be

problems with the instrument or compensation settings.

A question arises as to what happens when highly auto-

fluorescent cells are studied. Typically, in such a setting, the

autofluorescence distribution is not randomly distributed in

the uncompensated measurement space, but is correlated. The

in silico model allows for the specification of such an auto-

fluorescence distribution. In such a case, it is still possible to

encounter unusually correlated distributions in the autofluor-

escence region after compensation. This is primarily because

the autofluorescence emission spectrum is distinct from the

fluorescence dyes that are being measured; thus, the spillover

matrix used to compensate stained cells will not “properly”

correct the correlation between the autofluorescence measure-

ments. Hence, the autofluorescence distribution achieves an

under- or over-compensated appearance in the compensated,

fluorescence dye space. Similar to the situation above, such

distributions should not, on their own, raise concerns about

compensation settings or instrument settings.

Finally, in some situations it may be useful to use

“autofluorescence compensation” to improve sensitivity by

correcting for autofluorescence measured an otherwise unused

channel (4). In this case, the resulting corrected values will

now be dominated by noise and therefore subject to the same

potential distributions as described in Figures 2 and 3.

In summary, the intricacies of background measurements

(i.e., of cells unstained in a particular parameter) can lead to

unusual or unexpected distributions following spectral

unmixing (compensation). Fortunately, these occur relatively

rarely, but when they do occur they should not, on their own,

raise undue concern.

METHODS

The in silico model was implemented in JMP (version 11,

SAS Institute, Cary, NC). Scripts are available by request to

Figure 2. In silico modeling of flow cytometry data. In the these graphs, eight different subsets are modeled, each shown with a different

color. The data comprises of three measurement parameters, “X,” “Y,” and “Z”. Four of the subsets are positive for Y, eight of the subsets

express different levels of X. Each panel shows three bivariate plots comparing every parameter against every other parameter. In addi-

tion each panel shows the spillover matrix for the three detectors. All data are shown properly compensated. A: A small amount of mea-

surement error is modeled and shown using Logicle scaling (left) or logarithmic scaling (right). B: Compared to A, relative measurement

error is increased fivefold, resulting in more spillover spreading in the compensated distributions. C, D: Compared to B, additional spectral

spillover is introduced into detector Y from either detector Z (C) or X (D), resulting in the opposite background correlations.
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the author. The script requires the following as inputs: num-

ber of parameters (colors); for each parameter: a relative error

factor and the spillover coefficient into other parameters;

number of types of autofluorescence; for each autofluores-

cence: the mean and (log normal) CV of the autofluorescence

distribution for every parameter; the number of subsets to

model; for each subset: the number of events, the autofluores-

cence type to use, and the mean and (log normal) CV of the

fluorescence distribution for every parameter.

The script creates a new data table containing one entry

for every cell specified. For every parameter of each cell, it cre-

ates a value for the intrinsic autofluorescence and the cell-

associated dye fluorescence, using the specified mean and CV

as a basis for random number generation. The sum of all

parameters’ intrinsic dye fluorescence values multiplied by the

respective spillover coefficients is added to the intrinsic auto-

fluorescence to compute the “true” signal. “Measured” signal

is computed from this by introducing a Poisson-based

randomization to simulate photon counting errors (i.e., a

random value proportional to the square root of the “true”

signal; using the detector’s error factor as the constant of propor-

tionality). Finally, these “measured” signals undergo compensa-

tion (using the inverse of the spillover matrix) to generate the

compensated values. These are stored both as log-transformed

and as logicle-transformed (5) in the spreadsheet.

The script has the options to generate grid lines, where

grids are equidistant in either measurement space or in dye

space (the latter is shown in Figs. 3B and 3C). A separate

script is available to perform successive partial to full compen-

sations, saving a separate graphic for each step (e.g., that can

be concatenated into a movie).
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Figure 3. Similar modeling of distributions as in Figure 2, but with five populations expressing varying levels of X, and all expressing Y (not

shown, but see Fig. 2). Grid lines in these figures are drawn along equal fluorescence values and are thus rectilinear in the fully compensated

plot. Light gridlines correspond to values below zero. The grid lines help visualize the transformation between the uncompensated measure-

ment space and the compensated fluorescence space. A: The distributions are shown either fully compensated (left), uncompensated (right),

or with compensation settings at half of correct (middle). Note that the unviewed fluorescence in parameter Y introduces spillover spreading

in parameter X, resulting in an uncorrelated spreading of the events when viewing parameters X and Z, in the uncompensated plot. Conse-

quently, as compensation is increased, the events in this single population with higher levels of X will be pushed further down in the

Z parameter (arrows, middle plot). This accounts for the correlated distribution appearing in the compensated plots. B,C: The same data as

in A, shown fully compensated and with logarithmic (B) or Logicle (C) scaling. The shaded regions indicate the autofluorescence and back-

ground region as defined by fluorescence minus one (FMO) controls. It is generally safe to ignore unusual distributions in this shaded

region—as long as the central tendency (as described by the median of the florescence distribution) is not biased away from the control dis-

tribution, which might indicate under- or over-compensation.
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